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1. Introduction

In this paper we are concerned with stabilizing the classical hierarchical basis (HB) intro-
duced by Yserentant [29] (see also Bank, Dupont and Yserentant [4]) in the finite element
application to second-order elliptic boundary value problems. The proposed method mod-
ifies the hierarchical basis functions by using some approxirhtprojections on each
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104  Panayot S. Vassilevski and Junping Wang

level, yielding a basis which is a close relative to the well-known Battle—Ldémeaivelets
[13].
For simplicity, we illustrate the idea for the elliptic problem which seeks Hol(sz)
such that
— V- (a(x)Vu) = f(x) in (1.1)

where€ is an open bounded polygonal or polyhedral domain. The coefficient matsx
a(x) has bounded and measurable entries, and is assumed to be symmetric and positive
definite over2. The equation (1.1) is discretized by the Galerkin method with continuous
piecewise linear functions. We assume that the finite element triangufatimconstructed
from a series of successive refinements described as follows. Fifisi et an initial coarse
triangulation of2. Then, eacly, k =1, - - -, J, isobtained fron¥ ;1 by breaking up each
elementoff;_1 into a couple of smaller, but congruent elements. Without loss of generality,
this article will deal with the standard uniform refinement. The finite element space
employed in the Galerkin method corresponds to the partitida of the finest levell so
thatT, = J ;. Denote by, the mesh size for the partitiahy . Notice thati; = 2 ¥hq. Let

V. denote the finite element space of continuous piecewise linear function§ pvenally,

let Nt be the set of nodal points at levelvhich consists of all the vertices of elements of
I and use the two-level hierarchical (direct) node-set decomposKipe; N,il) UNk-1.

The stabilized basis functions are of the foft’ = (1 — 0¢_,)¢* where¢™ are
hierarchical basis functions at level(i.e., associated with the node—sé;f)) andQy_, is

an approximatd.2-projection onto the finite element spatg_1 with the understanding
that 9 ; = 0. Our main result can be stated as follows:

Theorem 1.1. (a) The set of functions,ﬁi(k)}i,k forms a basis for the finite element space
Vp. (b) For anyv € v, let

J
V= Z CO,iwi(O) +Z Z Ck,iwi(k) (12)

Xi E.N‘O k=1 Xi E‘N.](fl)

be its representation with respect to the approximate wavelet l{)ﬁ#’fé}i,k and define

J
o2 =hng™2 > B, +Y 2 > &, (1.3)
k=1

Xj ENO X E‘N",El)
whered = 2 or 3according to the relatio2 c R?. Assume that the operat@r{ satisfies

1(Qk — Ovllo < Tl Qrvllo  forallv € L3(S2) (1.4)
Then, there exists a constafik such that
callvll? < (vl < callvll®

wheneverr < Clgl. Herec1 and ¢, are two absolute constants anid ||1 indicates the
standardH 1-norm.
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A Stabilization of the Hierarchical Basis 105

The constan€y in Theorem 1.1 is given by the following estimate
Tk — Ir-Dvllo < Crllvllo Yv e Vg

Herel; represents the standard nodal interpolation operator¥gnto

As to the implementation, we shall construct preconditioners for the finite element dis-
cretization matrixA /) by using the block-matrix approach employed by Bank, Dupont and
Yserentant [4], Vassilevski [22], Axelsson and Vassilevski [2]. Details of this approach can
be found in the survey paper by Vassilevski [24].

The mathematical theory for the stabilized hierarchical basis is based on the norm equiva-
lence due to Oswald [19] (see also Dahmen and Kunoth [11], and Bornemann and Yserentant
[5]) and the strengthened Cauchy inequality originated by Yserentant [29]. The argument
adopted in this paper is a refinement of the algebraic (i.e., block-matrix) procedure from
Axelsson and Vassilevski [2] (see also [22,23,24]). A similar block-matrix approach was
later used by Griebel and Oswald [16].

It is interesting to note that the analysis in the spectral estimate for the multiplicative
preconditioner is different from the technique first proposed in Bramablal. [10] (see
also Wang [27] and Vassilevski and Wang [25]). But the basic elements (see (a.i) and (a.ii)
in section 4.2) for both approaches are the same. The new insight here is the perturbation
analysis presented in section 5; its essence can be found in Lemma 5.1 and the estimate
(5.9).

The results in the present paper can be applied to problems that require orfifthe
equivalent basis. The Stokes and elasticity equations in fluid dynamics and material science
are two examples with this feature.

We now comment briefly on related approaches. A method, called pre-wavelet space
decomposition, was reported by Kotyczka and Oswald [18] for two-dimensional regular
meshes. For tensor product meshes pre-wavelet space decompositions were also investigated
by Griebel and Oswald in [15]. The results in [18] and [15] have some restrictions on
either the mesh or the analysis. In Stevenson [21] (which is an extension of [20]), essential
progress was made toward more general meshes. More precisely, Stevenson proposed a
direct wavelet-like multilevel decomposition on general meshes which exploits the discrete
L?-orthogonal decompositioly = Vx_1 @ V!, where V! admits basis functions that
are linear combinations of three (standard nodal) basis functiols. &for recent results
exploiting wavelets in the Galerkin method for solving partial differential equations, see
Dahmen, Kunoth, and Urban [12].

The approach in the present paper is general and applicable to problems wherever the
hierarchical decomposition of the finite element space exists with hierarchical components
having a nodal basis, including spaces corresponding to non-uniformly refined meshes.
The precise statement regarding the mesh non-uniformity can be found in Bornemann and
Yserentant [5].

The paper is organized as follows. In section 2, we present an abstract framework of the
algebraic multilevel preconditioning procedure which extends the two-level block matrix
factorization method of Bank and Dupont [3] (see also Braess [6]). In section 3 we modify
the hierarchical basis by using the exaétprojection operators. In section 4 we analyze the
spectrum of the corresponding multiplicative preconditioner in the finite element application
for second-order elliptic equations. In section 5 we present a computationally feasible
modification of the hierarchical basis by using some approxirhatprojections. A spectral
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106  Panayot S. Vassilevski and Junping Wang

estimate for the approximate wavelet preconditioners is established in section 5 as well. In
section 6 we show that the stiffness matrix arising from the approximate wavelet basis is
well-conditioned.

2. An abstract framework

In this section we describe a multilevel preconditioning technique for matrices in block
structure. The technique was originated by Bank and Dupont in [3] and Braess [6] as a
two-level procedure. Its analysis and multilevel extensions were later exploited by several
researchers including Axelsson and Gustafsson [1], Bank, Dupont and Yserentant [4], and
Vassilevski [22], [24].

LetV be a Euclidean space of dimensioequipped with the inner produgt -). Consider
the problem of seeking € V satisfying

Au=Dh (2.1)

whereA = {ai.,}szl is a symmetric and positive definite matrix. The right-hand side
vectorb is given inV.

Of interest in this paper, we assume that the condition numbéiofarge. Our objective
is to find a good preconditioner foA. Then, some iterative methods (e.g., the Jacobi
and conjugate gradient methods) can be employed to yield good approximations of (2.1)
efficiently. This goal will be accomplished by transformiAago a matrix corresponding to
an appropriately chosen basisbfThe rest of this section is devoted to a detailed discussion
of this preconditioning procedure.

Let Y = {y1,¥2,...,Y.} be a new basis fow. Denote, for anw € V, by V =

V1,02, ...,0,)" the co-ordinates of with respect to the new basi. Notice thatv =
n
> 0;yi. The matrixY = (y1, Y2, ..., Y») transforms the vectar to v as follows:
i=1
V=YV (2.2)

With the help from the transformation matrix, the problem (2.1) is equivalent to the
seeking oftil such that

U=Db, withA=YTAY, b=Y"b (2.3)

If the transformed matrixA is well conditioned, then a preconditions8r for A can be
constructed by solving (2.3) approximately. More precisely, for dng V, the action
B~d can be computed by the following procedure:

o firstfindd = y7d,
o then solveAX = d by some simple iterative method (e.g., the Jacobi method),
¢ denote byx the approximation from the preceding step andssetd = YX.

The construction of such a desirable b&8is often difficult in practical computations.
In what follows of this section, we present an abstract framework which constyuciasg
recursively the two-level technique of Bank and Dupont [3].
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A Stabilization of the Hierarchical Basis 107

Assume that the linear spa¥ecan be decomposed as follows:
V,;=V=VigV? (2.4)

Here ‘@’ denotes the direct sum of subspaces. For simplicity of notation, we have also
introduced a subscript/* since we intend to use successively the same proceflurel
times. Each subspace is assigned an appropriately-chosen basis,

Vii Yi={yfeV, j=12... k)
V2. Oyzz{yj?ev,jzl,z,...,kz}

o~

The sets of vectors frofi; and¥, forms a basis of/. For anyv € V, letV = [% ] be the

co-ordinates with respect to the new basis, wittandv, being the components M} and
V§, respectively. The transformation matdixis, therefore, decomposed Bs= [Y1, Y>],
satisfying

YiV1 4+ YoV =V (2.5)

With the above partition, one obtains the following block-form for

~ A1 A
A=[11, Y]  A[Y1, Vo] = [;\\; XZ} (2.6)

where —~ - —~ -
A1 =Y AY1, A=Y AY

221:YJAY1, XZZZY;—AYZ
It would be unrealistic to assume that the matixs well conditioned. However, the

submatrixA11 might become well conditioned for an appropriately chosen decomposition
(2.4). Thus, we make the following assumption:

Al. There exists a direct decomposition (2.4) and a basivﬂaso that the submatrid 11
is well-conditioned.

The submatrixd;_1 = ng is the block ofA onV2, which may not be well conditioned.
This difficulty can be overcome by repeating the above procedure, now apphed.to=
V§ and the blockA ;1. Therefore, the procedure will create a direct decomposition:

v=VvieVvi o...eoVviev (2.7)

so that the restriction ofi to each subspac‘e} gives well-conditioned matrices. With

V; = V} ® V}? andV;_1 = V2, whereV; = V andVj is a space of relatively small

dimension, the direct decomposition (2.7) can be written recursively as follows:
Vi=VieVv,a j=JJ-1...1 (2.8)

We emphasize that each Vg andV;_; is equipped with an appropriately-chosen basis
which together form a new basis fuf;.

We now construct a sequence of matritg}; each can be considered as a linear operator
on the subspac¥; for j = 1,2,..., J. Assume thati; has been constructed df). Let
A; be the representation of; with respect to the new basis provided by (2.8) and the
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108 Panayot S. Vassilevski and Junping Wang

given bases df/} andV;_1 (= V/?). Similar to (2.6), the matriﬁj has the following block
structure: R 0 20
A-5 B] 29)
Az Az

from which one defined;_; = Zf(zfz)

The matrix;fj admits the following standard block-Cholesky factorization,

20) -1

_ A 0 0\t

Aj = [A(l; 200 (7))L A(/)] [1 <A1]1> Aljz} (2.10)
Az1 Aj-1— Az (Ail) A JLO 1

Forj =1,2,...,J,let B}’f be preconditioners t&(ljl) satisfying some properties to be

. .\ —1 .
specified later (e.qg., the relation (3.13) in section 3). By dropping the@ﬁh(ﬁ‘lfl)) 2(1’2)
in (2.10), we have a preconditionBp, for A from the following routine inductive procedure
(see Vassilevski [22,23,24] for more information).

Algorithm 2.1.  Multiplicative preconditioner B, = By , First setBg , = Ap. Assume
that a preconditioneB;_; , for A;_; has been constructed. Obtain one foras follows:

() (1
Ba=|2 0 [0 B, (2.11)
A21 Bj_1p 0 1

e Set

o Get a preconditiones; , from I?l-,p by changing bases. More precisely, the precondi-
tioner for A, is determined by the equatidsy , = YT B; ,¥, or B; ) = YB, Y7 (see
(2.6) for detalils).

The multiplicative preconditioneB, was constructed from the symmetric block Gauss—

Seidel approximation of (2.10) using preconditionersXé’f andA;_;. If ij is approxi-
mated by its block-diagonal part in (2.9), then an additive preconditionet fepossible.

Algorithm 2.2.  Additive preconditioner B, = Bj, First setBg, = Ag. Assume the
existence of a preconditiond¥;_; , for A;_;. Construct one for; as follows:

¢ Set .
Ba=[B O 2.12
Bi,= .
J,a 0 ij]_,a ( )
¢ Obtain a preconditioneB; , from §j,a by changing bases. More precisely, the precon-
ditioner of 4; is determined by the equatids) , = Y7 B; .Y or B, ; = YB; ;Y.

Implementations of the additive and multiplicative preconditioners rely on the transfor-
mation matrices’; among the subspaces in the decomposition. Note that we have defined
B; , based omB;_1 , and, in the implementation, we will need the inverse actions;of.

Based on the identitg&‘j‘; = YEJ.‘;YT we see that these actions are available assuming by
induction that the actions CBJ.__ll’ , are computable. Note also that the inverse actions of
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A Stabilization of the Hierarchical Basis 109

Y andY T are not needed. The same argument applies for the additive precondgigner
Details can be found from the second part of this work [26].

It should be pointed out that the decomposition (2.7) must be known prior to the imple-
mentation. Such a decomposition can be constructed by using various techniques which
are often problem—dependent. In particular, one might be able to obtain a computationally
feasible decomposition (2.7) by using properties of the matdgemnly, yielding methods
of algebraic multigrid-type. However, the following four sections shall be devoted to an
investigation of (2.7) for the finite element discretization of (1.1pbtmctured gridsvhich
are obtained by a series of successive (possibly local) refinements for a given initial coarse
triangulation of the physical domain as sketched in section 1.

3. Wavelet-modified HB preconditioners

We now return to the model problem (1.1) which is discretized by the Galerkin method as
described in section 1. Leéf; be the set of nodal points at levewhich consists of all the
vertices of elements ¥ ;. Recall that the refinement procedure generates a sequence of
nested space¥y Cc V1 C--- C Vy.

3.1. The hierarchical basis
Each finite element spadg has a set of nodal (Lagrangian) basis:

Vi = span{q’;l.(k) Cx; € Ny
defined byj;l.(k)(xj) = §;; whered;; is the standard Kronecker symbol. I.ré,(f) = N\ Nk—1
be the set of new nodal points at lexeland

Vkﬂ) = spar{¢l.(k) DX € N,El)} (3.2)
One then has the following direct decomposition:
Vi = Vk(l) D Vi1 3.2)

which is an analogue of (2.8). The subsp&ge; is equipped with the standard nodal basis
over the finite element partitiofi;_1.
A successive use of (3.2) yields the following HB decompositiorifee V;:

1 1 1
v=vilevl e..evi’ev (3.3)

The classical multilevel hierarchical basis method (see Yserentant [29] and Bank, Dupont
and Yserentant [4]) is a preconditioning technique based on (3.3). In particular, the method
outlined in section 2 can be applied to yield some multiplicative and additive preconditioners
for the global stiffness matrix.

The difficulty with the hierarchical basis method is that the corresponding preconditioners
are not spectrally equivalent to the original matrix. This is technically due to the fact that the
interpolation operatof; : V — Vi, defined byl,v = ineNk v(x,-)q&i(k), is not bounded in
the H1-norm uniformly with respect to the differende— k — oo or the ratio of the mesh
sizeshy/hy.
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110  Panayot S. Vassilevski and Junping Wang

3.2. Modified hierarchical bases

Here we propose a general modification for the hierarchical basis. Specific examples with
improved preconditioners will be discussed in next two sections.

Let M; be bounded linear operators froh?($2) to the finite element spaceg for
j = 0,---,J. The boundedness is considered as an operator fidf®) — LZ(2).
Consider the following modification df’k(l):

Vi=U0-Mepv®,  k=12-]

Lemma 3.1. For each hierarchical basis functioﬁ}(k) € Vk(l), Ietwi(k) = (I—Mk_1)¢>l.(k).
Then, ) .
Te =" v e N (3.4)

forms a basis of/kl. Moreover, the following decompositions hold:

Vi =Vievia

(3.5)
V =VieVvi e --eVieWw

Proof First we show that’; is a set of linearly independent functions. l{et} be real
numbers such that

Y wyP@=0 vx

Xi EN]((]')

With ¢ =3 N oc,»¢l.(k) € Vk(l), the above leads to

¢(x) — My_16(x) =0 Vx

It follows that¢y = My_1¢ € Vi_1 N Vk(l) = {0}. Thus, we obtaip = 0 which implies
a; = 0 for alli. This shows thal' is a set of linearly independent functions.

Next since diankl) < dim(Vk(l)) andr’; is a linearly independent set, then c{M,}) =
dim(Vk(l)) andT;, forms a basis forVkl. Similar arguments can be applied to show that
Vkl N Vk_1 = {0}, which verifies the validity of the first equality in (3.5). The second one
in (3.5) is merely a by-product of the first. [ |

3.3. Wavelet-modified hierarchical bases
Let Oy : L%(2) — V; be theL?-projection defined by

(Qiv,9) = (v.9)  VoeV (3.6)

where(., .) stands for the standaicf(2)-inner product.
With M, = Qy, one obtains from Lemma 3.1 a modification of the hierarchical basis. It
follows from the previous section that the modifivﬂ is given by

Vi=(U -0V = — Qu-1)Vi = (Qk — Qk-1)V 3.7)

Therefore, the subspacef,é are mutually orthogonal to each othetiA($2). This modified
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A Stabilization of the Hierarchical Basis 111

hierarchical basis shall be calladvelet basigsee [13] for more information). The precon-
ditioning methods discussed in section 2 are then applicable to the wavelet decomposition,
yielding somewavelet preconditionerfor the stiffness matri.

We now describe an equivalent, but implementation-oriented, approach for the construc-
tion of the wavelet preconditioners. To this end,déi, v) = an(x)Vu - Vudx be the
bilinear form associated with the elliptic operator in the problem (1.1). The following dis-
cretizations of the elliptic operator are needed:

e The discretization (solution) operataf®) : v, — V; at levelk defined by
AP Yy =a@,¥) Vv, ¢ € Vi (3.8)

Denote byx, the largest eigenvalue af®).

o The discretization operatot) : V! — V!inthe subspac#!:

k
AR, ) =a@,y) Vo, ¥ e V2 (3.9)
Letil  andil . be the largest and smallest eigenvalued §f.
e The communication operato "2) D Ve —> VR andAg‘l) D VE > Vi,

(A(lkz)!}, vh =a@l ¥) vole Vi g e Viea

3 i i (3.10)
(A;kl)vl’ 1//) = a(Uls W) Vvl S Vkl, 11” € Vk_l

Note thatA ") is the L2—adjoint of A} .

Since the decompositioVj, = Vk1 @ Vi_1 is direct, one has the following two-by-two
block form for the operatoa ®:

(k) (k) 1
A(k)=|:All A1 }} Vi

(3.11)
AR AKD | Vi

The decomposition (3.11) can be seen as follows. Forwany € Vi decomposed as
v=ovl+dandy = y1+y, wherevl = (1 — Qv e V&, yl=( - Oy e V!
andd = Qx_1v € Vi_1, ¥ = Qx_1¥ € Vi_1, one has

AW, ) =a@, ¥) =a@' + 0,y + )
=a@h YY) +a@ ¥ +a@h ) +a@. )
= ARV yY + AN, vY + AR ) + (A% Vg, ) (3.12)

([ ASIETED
Ay Ao ][ v

To construct the wavelet-modified HB preconditioners, we assume the existence of some

given approximationBi’i) , Which are symmetric and positive definitevifr, tothe operators
(k)
A

11.k=1,2,...,J. We also assume the validity of the following spectral equivalence:
AR o < BRVL oY < A+ bp@a®et o) wlevt  (3.13)
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Hereb1 > 0 is an absolute constant independent ahdJ. In practical implementation,
Bf‘l) can simply be chosen as a diagonal matrix.

Algorithm 3.1.  Wavelet-modified multiplicative HB preconditioner Let B©@ = A©  For

k=1,...,J define
(k) k)7t 4 (k)
B — By 0 I By Ap
AR B&D | 0 1

Note that one solution witt® ) requires two solutions with each of the approximations
Bﬂ) s=12, ..., k, one action with each 04(12 andAgl), s=1,2, ...,k and a coarse-
grid solution withA©@ . The additive preconditioner can be defined as in (2.12).

We point out that the wavelet basis functiayzg‘) = (I - Qk71)¢,-(k) are not locally
supported ir2 which causes a difficulty in implementing the wavelet basis. To overcome
this difficulty, Jaffard [17] suggested the use of FFT in order to compute the expansion of
functions. But this approach imposes some restriction on the mesh structure. There has been
a different approach by Oswald (see section 4.2 in [19]) which, for some special cases of
the partition, constructs a new basis tq’f with local support. In conclusion, the subspace
V,{l is not a desirable choice in the multilevel preconditioning method based on the matrix
bIocksA(lkl), A(lkz) andA(zkl). A remedial procedure is presented in section 5 in which the
subspacei/k1 will be replaced by a small perturbation of itself in order to have a set of
locally-supported basis.

4. Spectral analysis

Here we analyze the preconditiongf®) by refining the argument of Vassilevski [23] and
[22].

4.1. Ageneral result

Let E® = B® — AK) pe the difference betweetf®) and its preconditioneB®. For any
v € Vi with v = v + 3, wherev! € V! andi € Vi_1, one has from (3.12) and some
elementary computation that

(E®y,v) = (B®y, v) — A0y, v) @.1)
k k 1~ ~ k)~ k) ~ .
= ((Byy — Af)wh, vh) + (E€D5,5) + (Bf) 4195, A1)9)

The operatoiz® s positive semi-definite. In fact, this is true for= 0 because&©@ = 0.
Assume thatE®) is positive semi—definite on < k. It follows from (4.1) and (3.13) that
(E®y,v) > 0forallv e V.

An upper bound forE® can be derived by using (3.13) and two inequalities to be
specified later. First, using (3.13) in (4.1) one obtains

-1
(EWv,v) < bi(Afv, vh) + (B4D5,9) + (BY) A5, A%)D)
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A Stabilization of the Hierarchical Basis 113

In general, ifv™ e V; has the decomposition
v® = v<S)l + 00D, U(S)l c Vsl, v D ev, 4 4.2)

then
(E(S)U(S)’ U(S)) _ (E(S—l)v(s—l)’ v(s—l))

) -1 . )
<bh (A(fl)v(s){ U(s)l) i (B](_él) A(lsz)v(sfl), A(lbz)v(s,l))
Summing oves yields (withv = v®)
k . . k B
(EWv0) b1 Y G0 o) + B AR, Al
s=1 s=1

Thus, an upper bound can be derived fdf if the following two inequalities can be
establishedThere exist two constantg and 2 both independent df such that

k
3 AV v < 024N, v) (4.3)
s=1

and

k

-1
Z(Bfl) A<ls2)v(x—1>’ A(lsz)v(s—l)) < 02(A®y, v) (4.4)
s=1

forall v € V.

We emphasize that®)' andv©—? are determined by (4.2) withf*) = v. To summarize,
the following result has been proved:

Theorem 4.1. If (3.13), (4.3) and (4.4) hold true, then the following is valid for the pre-
conditionerB®

(ADv, vy < (BOv,v) < (h101+ 02)(APv,0)  Yve (4.5)

The spectral estimate (4.5) is a general result for the multiplicative preconditioner intro-
duced in section 2. The result is based on three inequalities which must be established for
each spatial decomposition (2.7).

4.2. An application to the wavelet basis

Our objective is to establish the inequalities (4.3) and (4.4). The argument is based on
two fundamental inequalities in the multilevel theory. Namely, there exists a comstant
independent of satisfying

k
(@) 1Qovl§ + Zlh;2||(Qj —Qj-Dvlg =olvllf  Yve Vi
/:
and ) o
@il) [a@i, vp)|° < 08200n Za(, vo)llwili3, Vi € Vi, ¥ € V;, j = i, where
8 € (0, 1) isaconstantgiven by the upper bound of the riagjor; 1 fori =1, ..., J.

Here and in what followd} - || s denotes the norm in the Sobolev sp&E€2) fors = 0, 1.
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The inequality (a.i) was proved in Oswald [19] (see also [5,11]) and (a.ii) was originally
seen in Yserentant [30] (see also [7,25,28]). The following result confirms (4.3).

Lemma 4.1. Assume that (a.i) holds true. There exists a constastich that
k (s) 1 1 ’
Z(Ailv(s) , ) y<C (A( )v’ v) Yo e Vi (4.6)
s=1

Proof For the wavelet basis decomposition, one has from (4.2) that
V6D — 0. 10® and @' = p® — pG=D

Thus,
v = Q0511+ Quv = Quv, v = (0 — Qs 1Y

It follows from the inverse inequality and (a.i) that

k k
1 1 _ 1
PR D ol B e TR
s=1 s=1
k
=C Y h2(Qs — Qs 1vli§ < Ca(v, v)
s=1

which completes the proof of the lemma. [ ]

The following result will be used to verify the validity of (4.4).

Lemma 4.2. If (a.i) and (a.ii) hold true, then there exists a constahsuch that
k
Y RAGCYE < Caw.v) Ve Vi 4.7)
s=1

Proof First by using (3.10) and (3.8) one has
1AV )2 = g(06D, ADVED) = (AOpE=D AL)y6-D)
Thus, by using the Schwarz inequality
IAQVE D)3 < | AOpE-b)3
Introduce the operatdf; = KA. Hence,
R A 0D )2 < 2| AW D)2 = o(Tp0 ™D, D) (4.8)

By using the decomposition

s—1 s—1
_ Hl
w0 =0 =) (0 - Qv=) vV
j=0 j=0
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one obtains
s—1

a(T® =D, 007Dy = Y a(rt b,y (4.9)
=0

Now using the strengthened Cauchy inequality (a.ii) (note thats),

2
a(T, v, v(j)l)’ < 0262<S—-/>h;2a(v<1>1, v(./>1)||Tgv(s—1)||(2)
_ 0_252(571')]1?61(1)(]’)17 U(j)l) ||A(S)U(S*1)||%
= 52626=1) (D vDYy @(TwE=D, =Dy
Therefore, substituting the above into (4.9) yields
s—1 1 2
a0, 0Dy < 62| $ 5= [a(v(j)l’ v(j)l)]z

j=0

Applying the Cauchy—Schwarz inequality one obtains
a(T6=D 6Dy < 52 ° S(Sma(vml 0
N ’ — 1 _ 8 J:O k]

Summing oves leads to the following

k s—1
) i N N
Za(Tsv(s_l), 0Dy <52 Z § T gD,y
X 1-5 _
s=1 s=1j=
5 \2 k=t L
< o2 a(@W’, ph
1-6)
j=0

which together with (4.6) and (3.9) implies
k
D a@t P Yy < c(a®v, vy e
s=1
The lemma is thus verified by combining the above inequality with (4.8). [ |

The following useful result, which is a reformulation AL in section 2, will be proved
in section 6.1.

Lemma 4.3. If /\,f’ min @ndA - are the smallest and largest eigenvalues&@f, then

there exist constants; and C both independent df; such that,
-2 1 1 -2
Cih~ < )‘k; min = )‘k; max < Cahy,
Consequently, the matriA(lkl) is well conditioned.

We are now in a position to verify the inequality (4.4). Observe that from Lemma 4.3 the
matrix A(fl) is well conditioned. Thus, one may choose a diagonal preconditiﬂﬂér:
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ah?1 for the matrifol). Herex is a parameter which should be adjusted so that (3.13) is

satisfied for some;. With the above selection (Bfl) it is trivial to see that

k k

-1 o
> (B ARV ADCY) < Y r2 AP Y3 < c(a®, v)
s=1 s=1

where we have used (4.7) in the last inequality. The general cas{i{?osatisfying (3.13)

-1
can be treated similarly sin (‘1) is spectrally equivalent ta—lhfl . This verifies the
validity of (4.4). The result can be summarized as follows:

Theorem 4.2. If the inequalities (a.i) and (a.ii) hold true, then there exists a constant
C > Oindependent of such that

(AP v) < (BPv,v) <cA®v,v)  Vve VW

fork =0,1,...,J. The constan€ depends only oh; from (3.13),8 from (a.ii), ando
from (a.i), (a.ii).

It should be pointed out that the validity of (a.ii) relies on some regularity assumption for
the coefficient matrixx = a(x) of (1.1). Thus, the estimate (4.7) is not known for the elliptic
equation (1.1) with arbitrary(x). Without assuming (a.ii), one can derive the following
straightforward sub-optimal estimate:

Lemma 4.4. If (a.i) holds true, then there exists a constahsuch that
k
S RAADVC V|2 < Chaw,v)  Yve Vi (4.10)
s=1
Proof From (4.8) we get
k k
S RASV Y2 < 3 a(Tet D w6 (4.11)
s=1

s=1

SinceT; = h?A® and the largest eigenvalue df*) is proportional tok;?, then there
exists a constar@ such that

a(T™Y 6=y < )2 = €)1 05—l < ClvlI2 (4.12)

where we have used the fact that th& projection operatoQ;_; is bounded inH1().
Substituting (4.12) into (4.11) yields (4.10). [ |

Theorem 4.3. If the inequality (a.i) holds true, then there exists a constant 0 inde-
pendent ok such that

APy, v) < BPv,v) <CcA+k) (APv,v) Vve
fork=0,1,...,J. The constanC depends only oh; from (3.13),0 from (a.i), and the

H-norm of theL?-projection operatorQ, fors =1, -- -, k.
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Proof It suffices to verify the conditions of Theorem 4.1. The inequalities (3.13) and (4.3)
were already proved in Lemmas 4.3 and 4.1. The validity of (4.4) was concluded by Lemma
4.4 withgs = Ck. |

Based on a more refined analysis due to Griebel and Oswald [16], the following result
can be proved:

Theorem 4.4. If the inequality (a.i) holds true, then there exists a constant 0 inde-
pendent ok such that

APy, vy < BPv, v) < CA+logy(1+ k) (APv,v)  VYve W

fork =0,1,..., J. The constan€ depends only oh; from (3.13),0 from (a.i), and the
H1-norm of theL2-projection operatorQ; fors =1, ..., k.

5. Approximate wavelet bases and preconditioners

In this section we present a computationally feasible modification of the hierarchical basis
by approximating the.2-projectionsQ;. To this end, letD¢ be a bounded linear operator
that approximates the exatf-projection Q, in the sense that there exists a small (but
fixed) T > 0 satisfying

1(QF — @ov)llo = 7llQsvllo Vv eV (5.1

In practical computation, the approximation opera@ris given as a polynomial of the
Gram matrix associated withi;. Details will be given in the second part of the paper.

With M; replaced byQ¢ in section 3.2, one obtains a modified hierarchical basis as a
perturbation of the wavel]et basis. Such a basis is calpgtoximate wavelet basis this
paper. It follows from Lemma 3.1 that the approximate wavelet basis is given by

=y = -0f Do : vxieNP k=01,---,7)
where{qsi(")} is the set of the hierarchical basis functions. Also, one has from (3.5) that
v=Vvievi e --eview
with V1 = (1 — zfl)Vk(l). Each subspacg! is equipped with the following basis:
M= (Y0 = - Q¢ o : Vui e N
The corresponding preconditioners can be constructed by repeating the procedure dis-

cussed in section 2 or section 3.3. A spectral analysis can be established along the way
presented in section 4. Details follow in the rest of this section.

© 1997 by John Wiley & Sons, Ltd. Numer. Linear Algebra Appl., Vol. 4, 103-126 (1997)



118  Panayot S. Vassilevski and Junping Wang

5.1. Preconditioners

Consider the space
1_ /.7 _ pa QO _ 7 _ pa _
Vk = Qk—l)Vk = Qk_]_)(lk T —1) Vi

and introduce the operatosd’) : Vi — VLAY : v g — vEandAY) : vis vy

by using the same formulas (3.8)—(3.10). Then, the matthk admits a two-by-two block

form (3.11), withnow a differentspadgl. Following the spirit of the Algorithm 2.1, one can
constructa corresponding preconditioBét) by using approximationBY? tothe operators

A(lkl) Assume that the spectral equivalence (3.13) holds true for those approximations with
a constanby > 0, independent of andk.

5.2. Spectral estimates

The general resultin Theorem 4.1 can be employed to yield some spectral estimates for the
approximate wavelet preconditioner. The key point here is to verify its conditions (3.13),
(4.3) and (4.4) in this application.

Notice that anw® e V, admits the following unique decomposition:

v = y®* + oD (5.2)

where L 1
v = (1= Q4 U — LW e V= (1 - 08 v

, ‘ (5.3)
vOD = 04 WO 4 (1 — 0% NI_1v® € Vg

The above relation provides the tere#®” andv=2 in (4.3) and (4.4) with® = v € V.
Lete; = v — Qv be the deviation 06 from Q,v. SinceQ? is an approximation
of Qy, it is reasonable to believe that the deviatigrcan be essentially neglected in the

argument. The following lemma provides a rigorous estimate on this perturbation.

Lemma 5.1. One has the following identity:

es—1 =[0Qs-1+ Ry—1les + Ry—1(Qs — Q5—1)v (5.4)
whereRr,_1 = (Qs—1 — Qf_)(s—1 — Iy).
Proof It can be seen that

€s—1 = oD — Qs-1v
(Qs-1— Q?,]_)Is—lv(s) + Q?,]_U(S) = Qs-1v
(Qs-1— Q?_l)ls—l(v(s) — Osv) + Q?_l(v(s) — Osv)
+(Qs-1— Q?,l)ls—lev + Q?,]_va — Q5-105v
= (Qs—1— Q?,]_)Is—les + Q?,llses
+0s-1(s-105v — Q5v) — Q?_l(ls—leU — 0sv)
= (Qs-1— Q?_l)(lel —Iy)es + (Qs-1— Q?_l)ex + Q?_les
+(Qs-1— Q?_l)(lsfl —I;)Qsv
= [Qs—l + (Qs-1— Q?_l)(ls—l - IY)] s
+(Qs-1— Q?,;L)(Is—l —I5)0sv
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This together with the fact thaf;_; — I,) O;_1 = 0 completes the proof of the lemnm.

Using now (5.1) and thé&.?-boundedness of the nodal interpolation operafgrs
Vi — Vs_1 we arrive at

[Rs—1vllo = CrTllvllo  Yv eV (5.5)
for some constanty. It follows from (5.4) and (5.5) that
lles—1llo < (1 + Cr7)llesllo + CrTII(Qs — Qs-1)vllo (5.6)
From now on we assume thais sufficiently small such that
Crt < g1 =Const< 1 (5.7)

It is then trivial to see that

1 1+q1
1 C < =
a+ Rt)z_t] 5

Observe that; = 0. Then, a recursive use of (5.6) leads to

= Const< 1 (5.8)

k
lles—1llo < CrT Y _(A+ Cr)*[(Q; — Qj-1vllo

j=s

Therefore, withh; = 3h;_1,

k .
les—1llo < Crths—1 Y. (L+ Crt) = h7Y(Qj — Qj—1)vllo

j=s

k .
= Crthy-1 Y (L4 Crt) = hy hih Q) — Qj-Dvllo
Jj=s

k . i—s
= Crehy1 Y0+ Crod ™ () n70Q; - 0j-vwlo

Jj=s
koo
< Crthe1 ) ¢/~ h; Q5 — Qj-1vllo

j=s
1

ko 2
= Crth-1 gy [Z ¢/ (Q) ~ Qj—l)U||%:|
j=s

The last inequality shows

k k k.
> h2lles—1lly < CRe?yt, 30 30 a0 — Q-1
s=1 s=1j=s (5.9)

k
2.2 1 2000 — 0. 2
= CRT% 1,2 Elhj 1(Q; — Qj-vvlig

The above inequality will turn out to be very useful in the spectral analysis.
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We point out that Lemma 4.3 is valid for the opera&\é’@f obtained from the approximate
wavelet basis. Thus, it is preferable to choose a diagonal precondiﬁé‘ﬁeﬁ ah;zl for
A&’f, wherea should be adjusted to satisfy (3.13).

Lemma 5.2. If (a.i) is valid andz is sufficiently small (but fixed), then (4.3) holds true for
some constant;.

Proof The component®* is given by (5.3). Since

1
v =0 0D =+ Qv e 1 — Qv

then L
v o < 1(Qs — Qs—1)vllo + llesllo + lles—1llo (5.10)
Notice that

X k
S AV W) < €3 P 3
s=1 s=1

Thus, from (5.10)

k k
1 1 _
YAV O <3 R Qs — Os—vvlio + lleslio + lles—1ll0)?
s=1 s=1
k k—1
< C Y hTQs — Qs-1vlG+C D hiPllesl3

s=1 s=0

k
< C(@) ) h72IQs — Qs-)vllf < Ca(v, v)
s=0

Here we have used the estimates (5.9) and (a.i). This completes the proof of the mmma.

Lemma 5.3. If (a.i) and (a.ii) are valid andr is sufficiently small (but fixed), then (4.4)
holds true for some constaps.

1
Proof With the choice OfBﬁ) = ah; 21, one has
k o k )
Z(Bisl) Ag-sz)v(s—l)’ A(lsz)v(s—l)) < CZhEHA(fo(S_l)”(%
s=1 s=1
Using the inequality prior to (4.8) and the fact th&t™" = ¢;_; + Q,_1v one obtains
e, ) =1 46). (s—1) ko2 (), (5—1) 1|2
2 (Biy At AputTY) < € 3 kAT g
s=1 s=1

1AW es )5+ 1A Q5-10]13)

k
-2
lles—1ll3 +C X h2A® Qw3

k
<C>Y h
s=1
k
<CY h
s=1 s=1
(5.11)
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The first sum in the last line of (5.11) can be estimated by using (5.9) and (a.i), yielding

k
-2 2
E h % lles—1llg < Ca(v, v)
s=1

The second sum in the last line of (5.11) has been estimated in Lemma 4.2. This completes
the proof of the lemma. [ |

To summarize, the following main result has been proved:

Theorem 5.1. Let B% be the approximate wavelet preconditioner constructed by using
Algorithm 2.1 or 3.1.

1. In addition to (a.i) and (a.ii), assume that the approximla?eprojectionsQZ are suf-
ficiently close to the exadt2-projectionsQ; so that (5.1) is valid with the constraint
(5.7). ThenB® is spectrally equivalent to the operatdf®).

2. Withoutassuming the inequality (a.ii), the preconditioB&? is nearly spectrally equiv-
alent to the solution operatot ¥) for sufficiently smalk. More precisely, an analogue
of Theorem 4.3 or Theorem 4.4 holds true.

6. Stability analysis

Our objective in this section is to show that the finite element discretization matrix for the
second-order elliptic operator is well-conditioned with respect to the approximate wavelet
basis. A spectral estimate for the additive preconditioner will be presented as well.

6.1. Some norm equivalence

The goal here is to verify the well-conditionedness of the maﬂl@ that was claimed in
Lemma 4.3 for the wavelet and approximate wavelet bases. Let us first establish a norm
equivalence for the modified hierarchical basis functions discussed in section 3.2.

Lemma6.1. Let Vkl = - Mk_l)Vk(l) be the modified hierarchical subspace of lekel
Then, there are constantsandc, independent df such thatforany ! = (1 —M;_1)¢t €
VL withg! e vP,

callp? < W7 < callptl?. =01 (6.1)
Recall that]|.||s stands for the norm in the Sobolev spat¥&2), s = 0, 1.

Proof The following strengthened Cauchy inequality is valuable: there exists a constant
y € (0, 1), independent of the mesh size or the level indexich that

(VoL VP) <y (VoL Veh2 (Vé, Vd)z,  Velev® geviy (62

In fact, we shall make use of the following version of (6.2):

(V@' + ), V@ +d) = A — D) (Vo Vb, VoleVv deVia (6.3)
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A derivation of (6.2) and (6.3) can be found from Bank and Dupont [3], Braess [6] or
Axelsson and Gustafsson [1]. .
We first establish (6.1) for the case= 1. With ¢ = —M;_1¢4* we see from (6.3) that

I e

Thus, the inequality on the left-hand side of (6.1) is valid with= 1 — 2. To derive the
part on the right-hand side, we use the standard inverse inequality to obtain

I3 < chlvti3 < ch2let3

where we have used the?-boundedness of the linear operatdy_1. Observe now that
sinceg! € Vk(l), there exists a consta@tsuch that

o113 < Ch2lpt (6.4)

It follows that||y1[12 < C|l¢||3 for some constar@. This completes the proof of (6.1) for
i = 1. Similar arguments can be applied to verify the dase0. [ |

Proof (Proof of Lemma 4.3) For any! = (I — My_1)¢* € V1, since
Af vt yh =a@t yh

and the bilinear fornu(-, -) is equivalent to the4-inner product, then there are positive
constantsg; such that

k
uly? < Af vt v < wlvti?

Using the norm equivalence (6.1), (6.4) and the inverse inequality we obtain with other
positive constants;,

U k U
fh 2113 < (AY) vt vh < Br216t13

The above inequalities verify the validity of Lemma 4.3. ]

6.2. TheH!-stability of the approximate wavelet basis

For anyv € V let

J
v= Z co,id)i(o) + Z Z cki(l — Qz_l)ﬁb;k) (6.5)

Xi GNO k=1 Xi e'Nl(cl)

be its representation with respect to the approximate wavelet basis. The corresponding
coefficient norm ofv is given by (1.3). Our main result in this section is the following norm
equivalence:

Theorem 6.1. There exists a small (but fixed) > O such that if the approximate wavelet
basis satisfies (5.1) with € (0, tp), then there are constantg and ¢, satisfying

cllvli® < vl < collvl®>  YveV (6.6)
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From now on, the above equivalence relation will be abbreviatejfvgé ~ ||v||%.

Proof We first rewrite (6.5) as follows:

J
v=) ¥ (6.7)
k=0
where, withQ® , =0,

1
v® = 3" it - 0t e vt (6.8)

x,-eNl(cl)

Furthermore, by letting® = Y ¢ 0" € Vk(l) we see thav®* = (1 — 04 Dep®.
xiGN/((l)
Thus, by using (6.1) in Lemma 6.1 (with= 0 andM;_1 = Qf_;) we obtain
1
l© 11§ = v ©7 15 (6.9)
i (k) @

Sincesp™ € V7, then

6@ ~n{ Y <

Xi EN;{D

Combining the above with (6.9) yields

J
2 -2, )2
ol = > " r 2115
k=0

This, together with Lemma 6.2 below, completes the proof of the lemma. [ |

Lemma 6.2. Letv andv®" be related as in (6.7), (6.8). If the condition of Theorem 6.1
is satisfied, then

J
_ 1
il = > h I ® )3 (6.10)
k=0
Proof The proof of Lemma 5.2 also shows that
J 1
D R Iv®E < Clivliz
k=0
Thus, it suffices to establish the following inequality:
J 1
iz < 2 (6.11)
k=0

For the inner product
b(v,w) = (Vv, Vw)
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the following analogue of (a.ii) is valid,
b u)|* < 082 DR 2 Y13 Y€ ViL Y e Vi 2
which, based on the inverse inequality gives,
s G=Dp=1p =1y . . g . P>
Ib(Yi, ¥j)| < C/o8 h;=h; ~lillo ¥l VUi eVi, Yy eV, j=i
Substituting the above imﬁwni =b(v,v) = ij,k=ob(v(f')l, U(k)l) yields,

J
2 2 : i~k —1,—1,. ()t ol
vllf <C «/03“ ‘hj hy ||U(J) lo ||v() lo
J.k=0

1
J 2 J
T 1 T 1
< Co (E sl klhj 2||U(J) ||%) (E sl klhk2||v(k) ”S>
j,k=0 j,k=0
J

_ Li—kl =2, ()2
=CJo ’;03 e
j, =

1
2

1+8, 2, (2
SCVo D IS
j=0
The last inequality verifies (6.11) and, therefore, completes the proof of the lemmm.

Remark 1. One can alternatively use the following characterization oH[‘}.morm of the
finite element spac¥ due to Oswald [19]:

J
2 ; —2p 12
lollz >~ inf b Nl
0

k=
UZZ Vg, VK€ Vi
k=0

J
Therefore, for the particular decomposition= v + 3> v®* one immediately gets the
k=1
desired upper estimate (6.11).

Since the two bilinear forma(-, -) andb(-, -) are equivalent, then we have from (6.6)
that
c1llvl® < av, v) < callvll? (6.12)

for some constantg andcz. The equivalent relation (6.12) can be re-interpreted as follows:

Theorem 6.2. If the conditions of Theorem 6.1 hold true, then the matrix representation
ofa(., -) by using the approximate wavelet basis is well-conditioned.
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6.3. On the additive preconditioner

The additive preconditioner corresponding to the approximate wavelet basis was defined in
section 2 (see Algorithm 2.2). It can also be interpreted by the following quadratic form:

J
(Bav,v) = Y (B0 v 4 (A0©, )
s=1

wherev®" is the component of € V in the subspaceg,l (see equations (6.5) and (6.5a),
(6.5b) for more detail).

Theorem 6.3. If the conditions of Theorem 6.1 hold true, then the additive preconditioner
B, is spectrally equivalent to the global stiffness matior the bilinear forma(:, -).

Proof Recall that each preconditionBzﬁ) is a matrix that is spectrally equivalent to the
diagonal matrix:; 2. Thus,

J
_ 1
(Bav, v) = Y h 20 )g
s=0

The above equivalence along with (6.10) asserts the conclusion of the theorem. m
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